Basak, A., Hancarova, M., Ulirsch, J. C., Balci, T. B., Trkova, M., Pelisek, M., Vlckova, M., Muzikova, K., Cermak, J., Trka, J., Dyment, D. A., Orkin, S. H., Daly, M. J., Sedlacek, Z., & Sankaran, V. G. (2015). BCL11A deletions result in fetal hemoglobin persistence and neurodevelopmental alterations. The Journal of clinical investigation, 125(6), 2363–2368. https://doi.org/10.1172/JCI81163
Bock, C., Datlinger, P., Chardon, F., Coelho, M. A., Dong, M. B., Lawson, K. A., Lu, T., Maroc, L., Norman, T. M., Song, B., Stanley, G., Chen, S., Garnett, M., Li, W., Moffat, J., Qi, L. S., Shapiro, R. S., Shendure, J., Weissman, J. S., & Zhuang, X. (2022). High-content CRISPR screening. Nature Reviews Methods Primers, 2(1). https://doi.org/10.1038/s43586-021-00093-4
Gaudelli, N. M., Komor, A. C., Rees, H. A., Packer, M. S., Badran, A. H., Bryson, D. I., & Liu, D. R. (2017). Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature, 551(7681), 464–471. https://doi.org/10.1038/nature24644
Gleditzsch, D., Pausch, P., Müller-Esparza, H., Özcan, A., Guo, X., Bange, G., & Randau, L. (2019). PAM identification by CRISPR-Cas effector complexes: diversified mechanisms and structures. RNA biology, 16(4), 504–517. https://doi.org/10.1080/15476286.2018.1504546
Gostimskaya I. (2022). CRISPR-Cas9: A History of Its Discovery and Ethical Considerations of Its Use in Genome Editing. Biochemistry. Biokhimiia, 87(8), 777–788. https://doi.org/10.1134/S0006297922080090
Ishino, Y., Krupovic, M., & Forterre, P. (2018). History of CRISPR-Cas from Encounter with a Mysterious Repeated Sequence to Genome Editing Technology. Journal of bacteriology, 200(7), e00580-17. https://doi.org/10.1128/JB.00580-17
Ishino, Y., Shinagawa, H., Makino, K., Amemura, M., & Nakata, A. (1987). Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. Journal of bacteriology, 169(12), 5429–5433. https://doi.org/10.1128/jb.169.12.5429-5433.1987
Li, T., Yang, Y., Qi, H., Cui, W., Zhang, L., Fu, X., He, X., Liu, M., Li, P. F., & Yu, T. (2023). CRISPR/Cas9 therapeutics: progress and prospects. Signal transduction and targeted therapy, 8(1), 36. https://doi.org/10.1038/s41392-023-01309-7
Mohiuddin, M. M., Singh, A. K., Scobie, L., Goerlich, C. E., et al. (2023). Graft dysfunction in compassionate use of genetically engineered pig-to-human cardiac xenotransplantation: a case report. Lancet (London, England), 402(10399), 397–410. https://doi.org/10.1016/S0140-6736(23)00775-4
Mojica, F. J., Juez, G., & Rodríguez-Valera, F. (1993). Transcription at different salinities of Haloferax mediterranei sequences adjacent to partially modified PstI sites. Molecular microbiology, 9(3), 613–621. https://doi.org/10.1111/j.1365-2958.1993.tb01721.x
Morgens, D. W., Deans, R. M., Li, A., & Bassik, M. C. (2016). Systematic comparison of CRISPR/Cas9 and RNAi screens for essential genes. Nature biotechnology, 34(6), 634–636. https://doi.org/10.1038/nbt.3567
Peng, R., Lin, G., & Li, J. (2016). Potential pitfalls of CRISPR/Cas9-mediated genome editing. The FEBS journal, 283(7), 1218–1231. https://doi.org/10.1111/febs.13586
Perez, A. R., Pritykin, Y., Vidigal, J. A., Chhangawala, S., Zamparo, L., Leslie, C. S., & Ventura, A. (2017). GuideScan software for improved single and paired CRISPR guide RNA design. Nature Biotechnology, 35(4), 347–349. https://doi.org/10.1038/nbt.3804
Ran, F. A., Hsu, P. D., Wright, J., Agarwala, V., Scott, D. A., & Zhang, F. (2013). Genome engineering using the CRISPR-Cas9 system. Nature protocols, 8(11), 2281–2308. https://doi.org/10.1038/nprot.2013.143
Raposo V. L. (2019). The First Chinese Edited Babies: A Leap of Faith in Science. JBRA assisted reproduction, 23(3), 197–199. https://doi.org/10.5935/1518-0557.20190042
Reuven, N., & Shaul, Y. (2022). Selecting for CRISPR-Edited Knock-In Cells. International journal of molecular sciences, 23(19), 11919. https://doi.org/10.3390/ijms231911919
Ryczek, N., Hryhorowicz, M., Zeyland, J., Lipinski, D., & Slomski, R. (2021). CRISPR/Cas Technology in Pig-to-Human Xenotransplantation Research. International journal of molecular sciences, 22(6), 3196. https://doi.org/10.3390/ijms22063196
Wang, W., He, W., Ruan, Y., & Geng, Q. (2022). First pig-to-human heart transplantation. Innovation(Cambridge (Mass.)), 3(2), 100223. https://doi.org/10.1016/j.xinn.2022.100223
Westermann, L., Neubauer, B., & Köttgen, M. (2021). Nobel Prize 2020 in Chemistry honors CRISPR: a tool for rewriting the code of life. Pflugers Archiv: European journal of physiology, 473(1), 1–2. https://doi.org/10.1007/s00424-020-02497-9
Xue, C., & Greene, E. C. (2021). DNA Repair Pathway Choices in CRISPR-Cas9-Mediated Genome Editing. Trends in genetics: TIG, 37(7), 639–656. https://doi.org/10.1016/j.tig.2021.02.008