References

How to Subscribe
MLS & MLT Comprehensive CE Package
Includes 185 CE courses, most popular
$109Add to cart
Pick Your Courses
Up to 8 CE hours
$55Add to cart
Individual course$25Add to cart
The page below is a sample from the LabCE course CRISPR: From Nature to Bench and Bedside. Access the complete course and earn ASCLS P.A.C.E.-approved continuing education credits by subscribing online.

Learn more about CRISPR: From Nature to Bench and Bedside (online CE course)
References

Basak, A., Hancarova, M., Ulirsch, J. C., Balci, T. B., Trkova, M., Pelisek, M., Vlckova, M., Muzikova, K., Cermak, J., Trka, J., Dyment, D. A., Orkin, S. H., Daly, M. J., Sedlacek, Z., & Sankaran, V. G. (2015). BCL11A deletions result in fetal hemoglobin persistence and neurodevelopmental alterations. The Journal of clinical investigation, 125(6), 2363–2368. https://doi.org/10.1172/JCI81163
Bock, C., Datlinger, P., Chardon, F., Coelho, M. A., Dong, M. B., Lawson, K. A., Lu, T., Maroc, L., Norman, T. M., Song, B., Stanley, G., Chen, S., Garnett, M., Li, W., Moffat, J., Qi, L. S., Shapiro, R. S., Shendure, J., Weissman, J. S., & Zhuang, X. (2022). High-content CRISPR screening. Nature Reviews Methods Primers, 2(1). https://doi.org/10.1038/s43586-021-00093-4
CRISPR Editing is All About DNA Repair Mechanisms. (2019, May 30). Synthego. https://www.synthego.com/blog/crispr-dna-repair-pathways
Davies, K., PhD. (2024, February 1). FDA approves the first CRISPR therapy for sickle cell disease. GEN - Genetic Engineering and Biotechnology News. https://www.genengnews.com/topics/genome-editing/fda-approves-the-first-crispr-therapy-for-sickle-cell-disease/
Davies, K., & Church, G. M. (2019). Radical Technology Meets Radical Application: An Interview with George Church. The CRISPR Journal, 2(6), 346–351. https://doi.org/10.1089/crispr.2019.29074.gch
DeWitt, J., PhD. (n.d.). CRISPR off-target detection with NGS. Integrated DNA Technologies. https://www.idtdna.com/pages/technology/crispr/crispr-genome-editing/crispr-detection/next-generation-sequencing
Doudna, J.A. (2022). CRISPR in Nature. In M.L. Hochstrasser et al. (Eds.) CRISPRpedia. Berkeley: Innovative Genomics Institute, University of California, Berkeley. https://innovativegenomics.org/crisprpedia/crispr-in-nature/
Gaudelli, N. M., Komor, A. C., Rees, H. A., Packer, M. S., Badran, A. H., Bryson, D. I., & Liu, D. R. (2017). Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature, 551(7681), 464–471. https://doi.org/10.1038/nature24644
Genetic Literacy Project. (2019, December 31). United States: Germline / embryonic. Global Gene Editing Regulation Tracker. https://crispr-gene-editing-regs-tracker.geneticliteracyproject.org/united-states-embryonic-germline-gene-editing/
Gleditzsch, D., Pausch, P., Müller-Esparza, H., Özcan, A., Guo, X., Bange, G., & Randau, L. (2019). PAM identification by CRISPR-Cas effector complexes: diversified mechanisms and structures. RNA biology, 16(4), 504–517. https://doi.org/10.1080/15476286.2018.1504546
Gostimskaya I. (2022). CRISPR-Cas9: A History of Its Discovery and Ethical Considerations of Its Use in Genome Editing. Biochemistry. Biokhimiia, 87(8), 777–788. https://doi.org/10.1134/S0006297922080090
HIV/AIDS Glossary. (n.d.). Binding. HIV.gov. https://clinicalinfo.hiv.gov/en/glossary/binding
Ishino, Y., Krupovic, M., & Forterre, P. (2018). History of CRISPR-Cas from Encounter with a Mysterious Repeated Sequence to Genome Editing Technology. Journal of bacteriology, 200(7), e00580-17. https://doi.org/10.1128/JB.00580-17
Ishino, Y., Shinagawa, H., Makino, K., Amemura, M., & Nakata, A. (1987). Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. Journal of bacteriology, 169(12), 5429–5433. https://doi.org/10.1128/jb.169.12.5429-5433.1987
Kotz, D. (2023, June 30). Lessons Learned from World’s First Successful Transplant of Genetically-Modified Pig Heart into Human Patient. University of Maryland School of Medicine. https://www.medschool.umaryland.edu/news/2023/lessons-learned-from-worlds-first-successful-transplant-of-genetically-modified-pig-heart-into-human-patient-.html
Lewis, T. (2023, October 18). Milestone pig-to-human heart transplant may pave the way for broader trial. Scientific American. https://www.scientificamerican.com/article/milestone-pig-to-human-heart-transplant-may-pave-the-way-for-broader-trial/
Li, T., Yang, Y., Qi, H., Cui, W., Zhang, L., Fu, X., He, X., Liu, M., Li, P. F., & Yu, T. (2023). CRISPR/Cas9 therapeutics: progress and prospects. Signal transduction and targeted therapy, 8(1), 36. https://doi.org/10.1038/s41392-023-01309-7
Liu, A. UPDATED: Bluebird’s sickle cell gene therapy comes with safety warning and higher price. Can Lyfgenia overcome CRISPR’s halo? (2023, December 8). Fierce Pharma. https://www.fiercepharma.com/pharma/fda-approves-bluebird-sickle-cell-disease-gene-therapy-can-lyfgenia-overcome-crisprs-halo
MacMillan, C. (2023, December 19). Casgevy and Lyfgenia: two gene therapies approved for sickle cell disease. Yale Medicine. https://www.yalemedicine.org/news/gene-therapies-sickle-cell-disease
Mohiuddin, M. M., Singh, A. K., Scobie, L., Goerlich, C. E., et al. (2023). Graft dysfunction in compassionate use of genetically engineered pig-to-human cardiac xenotransplantation: a case report. Lancet (London, England), 402(10399), 397–410. https://doi.org/10.1016/S0140-6736(23)00775-4
Mojica, F. J., Juez, G., & Rodríguez-Valera, F. (1993). Transcription at different salinities of Haloferax mediterranei sequences adjacent to partially modified PstI sites. Molecular microbiology, 9(3), 613–621. https://doi.org/10.1111/j.1365-2958.1993.tb01721.x
Morgens, D. W., Deans, R. M., Li, A., & Bassik, M. C. (2016). Systematic comparison of CRISPR/Cas9 and RNAi screens for essential genes. Nature biotechnology, 34(6), 634–636. https://doi.org/10.1038/nbt.3567
Office of the Commissioner. (2023, December 8). FDA Approves First Gene Therapies to Treat Patients with Sickle Cell Disease. U.S. Food And Drug Administration. https://www.fda.gov/news-events/press-announcements/fda-approves-first-gene-therapies-treat-patients-sickle-cell-disease
Peng, R., Lin, G., & Li, J. (2016). Potential pitfalls of CRISPR/Cas9-mediated genome editing. The FEBS journal, 283(7), 1218–1231. https://doi.org/10.1111/febs.13586
Perez, A. R., Pritykin, Y., Vidigal, J. A., Chhangawala, S., Zamparo, L., Leslie, C. S., & Ventura, A. (2017). GuideScan software for improved single and paired CRISPR guide RNA design. Nature Biotechnology, 35(4), 347–349. https://doi.org/10.1038/nbt.3804
Ran, F. A., Hsu, P. D., Wright, J., Agarwala, V., Scott, D. A., & Zhang, F. (2013). Genome engineering using the CRISPR-Cas9 system. Nature protocols, 8(11), 2281–2308. https://doi.org/10.1038/nprot.2013.143
Raposo V. L. (2019). The First Chinese Edited Babies: A Leap of Faith in Science. JBRA assisted reproduction, 23(3), 197–199. https://doi.org/10.5935/1518-0557.20190042
Reuven, N., & Shaul, Y. (2022). Selecting for CRISPR-Edited Knock-In Cells. International journal of molecular sciences, 23(19), 11919. https://doi.org/10.3390/ijms231911919
Ryczek, N., Hryhorowicz, M., Zeyland, J., Lipinski, D., & Slomski, R. (2021). CRISPR/Cas Technology in Pig-to-Human Xenotransplantation Research. International journal of molecular sciences, 22(6), 3196. https://doi.org/10.3390/ijms22063196
Shapiro, L. (2023, December 21). Bluebird set for Lyfgenia's launch after 'remarkable' approvals. Sickle Cell Disease News. https://sicklecellanemianews.com/news/bluebird-set-lyfgenias-launch-after-remarkable-gene-therapy-approvals/
Study identifies pitfall for correcting mutations in human embryos. (2020, November 4). Columbia University Irving Medical Center. https://www.cuimc.columbia.edu/news/study-identifies-pitfall-correcting-mutations-human-embryos-crispr
Wang, W., He, W., Ruan, Y., & Geng, Q. (2022). First pig-to-human heart transplantation. Innovation(Cambridge (Mass.)), 3(2), 100223. https://doi.org/10.1016/j.xinn.2022.100223
Westermann, L., Neubauer, B., & Köttgen, M. (2021). Nobel Prize 2020 in Chemistry honors CRISPR: a tool for rewriting the code of life. Pflugers Archiv: European journal of physiology, 473(1), 1–2. https://doi.org/10.1007/s00424-020-02497-9
What are genome editing and CRISPR-Cas9? (Updated 2022, Mar 22). MedlinePlus Genetics. https://medlineplus.gov/genetics/understanding/genomicresearch/genomeediting/
Xue, C., & Greene, E. C. (2021). DNA Repair Pathway Choices in CRISPR-Cas9-Mediated Genome Editing. Trends in genetics: TIG, 37(7), 639–656. https://doi.org/10.1016/j.tig.2021.02.008